Home

raio Precisão foco atomically thin mos2 a new direct gap semiconductor Descartar búfalo Pulapula

Monolayer MoS2 for nanoscale photonics
Monolayer MoS2 for nanoscale photonics

High-harmonic generation from an atomically thin semiconductor | Nature  Physics
High-harmonic generation from an atomically thin semiconductor | Nature Physics

Bandgap broadening at grain boundaries in single-layer MoS2 | SpringerLink
Bandgap broadening at grain boundaries in single-layer MoS2 | SpringerLink

Direct bandgap engineering with local biaxial strain in few-layer MoS2  bubbles | SpringerLink
Direct bandgap engineering with local biaxial strain in few-layer MoS2 bubbles | SpringerLink

Frontiers | Bandgap Engineering and Near-Infrared-II Optical Properties of  Monolayer MoS2: A First-Principle Study | Chemistry
Frontiers | Bandgap Engineering and Near-Infrared-II Optical Properties of Monolayer MoS2: A First-Principle Study | Chemistry

PDF) Atomically Thin MoS 2 : A New Direct-Gap Semiconductor
PDF) Atomically Thin MoS 2 : A New Direct-Gap Semiconductor

Nanomaterials | Free Full-Text | Benchmark Investigation of Band-Gap  Tunability of Monolayer Semiconductors under Hydrostatic Pressure with  Focus-On Antimony | HTML
Nanomaterials | Free Full-Text | Benchmark Investigation of Band-Gap Tunability of Monolayer Semiconductors under Hydrostatic Pressure with Focus-On Antimony | HTML

Frontiers | Two-Dimensional Semiconductor Heterojunctions for  Optoelectronics and Electronics | Energy Research
Frontiers | Two-Dimensional Semiconductor Heterojunctions for Optoelectronics and Electronics | Energy Research

Directly visualizing the momentum-forbidden dark excitons and their  dynamics in atomically thin semiconductors
Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors

Partial Oxidized Arsenene: Emerging Tunable Direct Bandgap Semiconductor |  Scientific Reports
Partial Oxidized Arsenene: Emerging Tunable Direct Bandgap Semiconductor | Scientific Reports

PDF] Atomically thin MoS₂: a new direct-gap semiconductor. | Semantic  Scholar
PDF] Atomically thin MoS₂: a new direct-gap semiconductor. | Semantic Scholar

Color online) Electronic band structure and corresponding total and... |  Download Scientific Diagram
Color online) Electronic band structure and corresponding total and... | Download Scientific Diagram

Atomically thin p–n junctions with van der Waals heterointerfaces | Nature  Nanotechnology
Atomically thin p–n junctions with van der Waals heterointerfaces | Nature Nanotechnology

PDF] Atomically thin MoS₂: a new direct-gap semiconductor. | Semantic  Scholar
PDF] Atomically thin MoS₂: a new direct-gap semiconductor. | Semantic Scholar

Atomically Thin Arsenene and Antimonene: Semimetal–Semiconductor and  Indirect–Direct Band‐Gap Transitions - Zhang - 2015 - Angewandte Chemie  International Edition - Wiley Online Library
Atomically Thin Arsenene and Antimonene: Semimetal–Semiconductor and Indirect–Direct Band‐Gap Transitions - Zhang - 2015 - Angewandte Chemie International Edition - Wiley Online Library

Monolayer MoS2 for nanoscale photonics
Monolayer MoS2 for nanoscale photonics

PDF) Atomically Thin MoS 2 : A New Direct-Gap Semiconductor
PDF) Atomically Thin MoS 2 : A New Direct-Gap Semiconductor

Excitons in atomically thin 2D semiconductors and their applications
Excitons in atomically thin 2D semiconductors and their applications

Temperature induced crossing in the optical bandgap of mono and bilayer MoS2  on SiO2 | Scientific Reports
Temperature induced crossing in the optical bandgap of mono and bilayer MoS2 on SiO2 | Scientific Reports

PDF] Indirect-to-direct band gap crossover in few-layer MoTe₂. | Semantic  Scholar
PDF] Indirect-to-direct band gap crossover in few-layer MoTe₂. | Semantic Scholar

The fabrication of atomically thin-MoS2 based photoanodes for  photoelectrochemical energy conversion and environment remediation: A  review - ScienceDirect
The fabrication of atomically thin-MoS2 based photoanodes for photoelectrochemical energy conversion and environment remediation: A review - ScienceDirect

Strain engineering of 2D semiconductors and graphene: from strain fields to  band-structure tuning and photonic applications | Light: Science &  Applications
Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications | Light: Science & Applications

Bandgap tunability at single-layer molybdenum disulphide grain boundaries |  Nature Communications
Bandgap tunability at single-layer molybdenum disulphide grain boundaries | Nature Communications

Band structure of MoS2 (A) showing the direct and indirect band gap, as...  | Download Scientific Diagram
Band structure of MoS2 (A) showing the direct and indirect band gap, as... | Download Scientific Diagram

Phys. Rev. Lett. 105, 136805 (2010) - Atomically Thin ${\mathrm{MoS}}_{2}$:  A New Direct-Gap Semiconductor
Phys. Rev. Lett. 105, 136805 (2010) - Atomically Thin ${\mathrm{MoS}}_{2}$: A New Direct-Gap Semiconductor

Strain-induced semiconductor to metal transition in the two-dimensional  honeycomb structure of MoS2 | SpringerLink
Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2 | SpringerLink